Visita ai Laboratori dell'INFN 9-10 Dicembre 2011 Laboratori Nazionali del Gran Sasso

Universita' di TRIESTE

Gianrossano GIANNINI

Fisica Nucleare e Subnucleare Dipartimento di Fisica Universita' di Trieste e INFN/Trieste Via Valerio 2, Trieste, 34127, Italy (giannini@ts.infn.it)

Laboratori Nazionali del Gran Sasso

Location: Gran Sasso Tunnel (Abruzzi, Italy) **Depth**: 1400 m (3800 mwe)

Operating Institution: Istituto Nazionale di Fisica Nucleare (INFN) LNGS permanent staff: 60 (physicists, technicians, administration) Scientists involved in LNGS experiments: 700 from 24 countries

Monte Aquila (**m. 2600**)

LNGS

The area of Campo Imperatore above LNGS

CONNISIONE LINDA PUBBLICI 42 SENATO

Figure 1.1.1: Sketch by A. Zichichi, 1979

External facilities

Administration Public relationships support Secretariats (visa, work permission Outreach Environmental issues Prevention, safety, security General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab & storage spaces Library Conference rooms Canteen

Astrofisica Nucleare e Subnucleare

(Fisica Astroparticellare/Astrofisica Particellare)

Fisica Nucleare e Subnucleare ASTROFISICA NUCLEARE E SUBNUCLEARE

Astronomia

Astrofisica e Cosmologia Atomo → Nucleo → Nucleoni: protoni e neutroni, ADRONI = Fatti di quark: con legame nucleare forte]

Modello Standard:

FERMIONI Leptoni e quark Costituenti Della Materia

FERMIONS

matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge		
ve electron neutrino	<1×10 ⁻⁸	0		
e electron	0.000511	-1		
ν_{μ}^{muon} neutrino	<0.0002	0		
$oldsymbol{\mu}$ muon	0.106	-1		
$ u_{ au}^{ ext{ tau }}_{ ext{ neutrino }}$	<0.02	0		
au tau	1.7771	-1		

Quarks spin = 1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
U up	0.003	2/3		
d down	0.006	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
t top	175	2/3		
b bottom	4.3	-1/3		

e BOSONI Fotoni/W,Z, gluoni

Portatori di Forza: Elettromagnetica/ Nucleare Debole, Nucleare Forte (G) Gravitazionale?

Unified Flootwards ania 1				
Unified Electroweak spin = 1				
Name	Mass GeV/c ²	Electric charge		
γ photon	0	0		
W-	80.4	-1		
W+	80.4	+1		
Z ⁰	91.187	0		

BOSONS

force carriers spin = 0, 1, 2, ...

Today

Unificazione delle Forze

MODELLO STANDARD : Fermioni (Costituenti) e Bosoni (Mediatori)

Oscillazioni dei Neutrini

•Idea della massa dei neutrini suggerita per la prima volta da Bruno Pontecorvo

> I Neutrini Interagiscono (Produzione o Rivelazione) come Autostati dell'Interazione Debole

 $|V_e\rangle$, $|V_{\mu}\rangle$, $|V_{\tau}\rangle$ = Autostati dell'Interazione Debole $|V_1\rangle$, $|V_2\rangle$, $|V_3\rangle$ = Autostati di Massa (H \rightarrow Evoluzione t) \cap I Neutrini si propagano (evolvono) come sovrapposizione di autostati di massa: MESCOLAMENTO

- Energia del neutrino Ev (GeV)

Distance from ν source (L)

Sole, Supernovae, Raggi cosmici

<u>Sorgenti Artificiali:</u> Acceleratori, Reattori Nuclear[‡]

Cosmic Radiation

Difference between observed ionisation and that at sea-level (ions cm⁻³) s⁻¹ Altitude (km) 1 -1.52 3 +1.2+4.24 5 6 7 +8.8+16.9+28.7+44.2 8 +61.3+80.4

Millikan scettico sui "...Raggi ... Cosmici" ys"

Hess 1912 @ 5km

Composizione dei Raggi Cosmici

PRIMARI: p~87 %, α~10 %, N~1 % e ~2 % γ~0.1 %, ν~0.1 % ?

Alta atmosfera :~ 1000/m²/s

I Raggi Cosmici Primari producono sciami di secondari in atmosfera

Colhoster 1914

@ 9km

SECONDARI al livello del mare $\mu \sim 30 \%$ p, n, ... ~ 2 % $v \sim 68 \%$

Interazione di Raggi Cosmici primari nell'atmosfera

Ρ	Proton	e	Electron
п	Neutron	μ	Muon
π	Pion	γ	Photon

Arrays of particle detectors

The MACRO experiment 1984 : Proposal 1987 : Construction starts

4/1994 : Full detector ON

12/2000 : Rest In Peace

37

MACRO Upward throughgoing muons

V beam from CERN: OPERA ICARUS

Fundamental physics

PRESENT EXPERIMENTS

ββ decay and rare events Cuoricino CUORE; GERDA

Dark Matter DAMA/LIBRA; CRESST WARP; Xenon test

Solar v Luna Borexino v from Supernovae LVD Borexino ICARUS

detector should be completed in 2006, ready for the v beam from CERN

OPERA

Collab.: Italy, France, China, Germany, Belgium, Turkey, Switzerland, Russia, Japan, Israel, Croatia

Yves Déclais 46

Liquid Argon (-176 °C)

First half of T600 module successfully operated in Pavia Expect to install T600 in 2004 T3000 detector proposed as a series of five T600 modules

Collaboration: Italy, Poland, China Spain, Switzerland, USA

- atmospheric neutrinos
- supernova neutrinos
- solar neutrinos
- proton decay

17 m INFN

47

ICARUS

detector: 600 t and later 3000 tons of liquid Ar operated as a large time projection chamber

goal: detection of v_{τ} appearence from the v_{μ} beam from CERN detection of solar neutrinos

technique: kinematic identification of the decay of the τ emitted

ICARUS T600 General layout

Installation in progress in Gran Sasso Hall B, commissioning after₄₉ summer 2007

LVD Large Volume Detector

Collab.: Italy, Brazil, Russia, USA, Japan

Running since 1992

1000 billions v in 20s from the SN core

Measurement of neutrinos spectra and time evolution provides important information on ν physics and on SN evolution.

Neutrino signal detectable from SN in our Galaxy or Magellanic Clouds

2 - 5 SN/century expected in our Galaxy. Plan for multidecennial observations

1000 tons liquid scintillator + layers of streamer tubes

300 v from a SN in the center of Galaxy (8.5 kpc)

SN1987A

Early warning of neutrino burst important for astronomical observations with different messengers (photons, gravitational waves) SNEWS = Supernova Early Warning System LVD, SNO, SuperK in future: Kamland, BOREXINO

 $\begin{array}{c} 0.1 \\ \leftarrow I \\ \leftarrow I \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ \hline 0 \\ \hline$

... ora DAMA/LIBRA

(Large sodium Iodide Bulk for RAre processes)

Annual modulation==> evidence for WIMPS

Final analysis: total 107731 kg·d

(Riv. N. Cim. 26 n. 1 (2003) 1-73)

New apparatus - installed 2002 - 2003 ~250 kg more radiopure NaI(TI)

 $A = (0.0200 \pm 0.0032) \text{ cpd/kg/keV}$

 $t_0 = (140 \pm 22) d$; $T = (1.00 \pm 0.01) y$

fitted (all parameters free):

it will offer unique radiopurity, increased and deep control of the running parameters

NEW R&D for ultimate NaI(TI) radiopurification started towards a possible 1 ton set-up DAMA proposed since 1996

53

Collab.: Italy, Germany, UK

CRESST

(Cryogenic Rare Events Search with Superconducting Thermometers)

4 sapphire crystals= 1 kg

WIMPs search with cryogenic technique (running at 15 mK) Looking for a very tiny temperature increase in the detector due to the energy deposited by nuclei hit by the WIMPs

Run until 2005

ββ decay neutrinoless experiments

 β decay n --> p + e- + $\overline{\nu}$

 $2\beta 0v$ is a very rare decay: T(half life) $\geq 10^{-25}$ years)

BOREXINO

300 tons liquid scintillator in a nylon bag 2200 photomultipliers 2500 tons ultrapure water Energy threshold 0.25 MeV Real time neutrino (all flavours) detector Measure mono-energetic (0.86 MeV) ⁷Be neutrino flux through the detection of v-e. 40 ev/d if SSM

March 2, 2007 10:12: inside of the SSS

Laura Perasso - Venezia, XII Neutrino Telescope, March 6, 2007

CUORE Site in Hall A at LNGS

Il Parco Nazionale del Gran Sasso e Monti della Laga, istituito nel giugno del 1995, e' una delle aree protette più estese e preziose d'Europa.

Il Parco, con un'area di circa 150.000 ettari, si estende in tre regioni (Abruzzo, Marche e Lazio) e cinque province (L'Aquila, Teramo, Ascoli Piceno, Pescara e Rieti). Comprende 44 comuni.

